CRYPTOREPORTCLUB
  • Crypto news
  • AI
  • Technologies
Sunday, June 22, 2025
No Result
View All Result
CRYPTOREPORTCLUB
  • Crypto news
  • AI
  • Technologies
No Result
View All Result
CRYPTOREPORTCLUB

Enhancing automatic image cropping models with advanced adversarial techniques

August 1, 2024
159
0

August 1, 2024

Editors' notes

Related Post

Bilinear sequence regression model shows why AI excels at learning from word sequences

Bilinear sequence regression model shows why AI excels at learning from word sequences

June 20, 2025
AI image models gain creative edge by amplifying low-frequency features

AI image models gain creative edge by amplifying low-frequency features

June 20, 2025

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Enhancing automatic image cropping models with advanced adversarial techniques

Enhancing automatic image cropping models with advanced adversarial techniques
Many commercial image cropping models utilize saliency maps (also known as gaze estimation) to identify the most critical areas within an image. In this study, researchers developed innovative techniques to introduce imperceptible noisy perturbations into images, thus influencing the output of cropping models. This approach aims to prevent essential parts of images, such as copyright information or watermarks, from being inadvertently cropped, thus promoting fairness in AI models. Credit: Masatomo Yoshida / Doshisha University

Image cropping is an essential task in many contexts, right from social media and e-commerce to advanced computer vision applications. Cropping helps maintain image quality by avoiding unnecessary resizing, which can degrade the image and consume computational resources. It is also useful when an image needs to conform to a predetermined aspect ratio, such as in thumbnails.

Over the past decade, engineers around the world have developed various machine learning (ML) models to automatically crop images. These models aim to crop an input image in a way that preserves its most relevant parts.

However, these models can make mistakes and exhibit biases that, in the worst cases, can put users at legal risk. For example, in 2020, a lawsuit was filed against X (formerly Twitter) because its automatic cropping function hid the copyright information in a retweeted image.

Therefore, it is crucial to understand the reason image cropping ML models fail so as to train and use them accordingly and avoid such problems.

Against this background, a research team from Doshisha University, Japan, set out to develop new techniques to generate adversarial examples for the task of image cropping.

As explained in their paper, published in IEEE Access on June 17, 2024, their methods can introduce imperceptible noisy perturbations into an image to trick models into cropping regions that align with user intentions, even if the original model would have missed it.

Doctoral student Masatomo Yoshida, the first author and lead researcher of the study, said, "To the best of our knowledge, there is very little research on adversarial attacks on image cropping models, as most previous research has focused on image classification and detection. These models need to be refined to ensure they respect user intentions and eliminate biases as much as possible while cropping images."

Masatomo Yoshida and Haruto Namura from the Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan and Masahiro Okuda from the Faculty of Science and Engineering at Doshisha University, were also involved in the study.

The researchers developed and implemented two distinct approaches for generating adversarial examples—a white-box approach and a black-box approach.

The white-box method, requiring access to the internal workings of the target model, involves iteratively calculating perturbations to input images based on the model's gradients.

By employing a gaze prediction model to identify salient points within an image, this approach manipulates gaze saliency maps to achieve effective adversarial examples. It significantly reduces perturbation sizes, achieving a minimum size 62.5% smaller than baseline methods across an experimental image dataset.

The black-box approach utilizes Bayesian optimization to effectively narrow the search space and target specific image regions. Similar to the white-box strategy, this approach involves iterative procedures based on gaze saliency maps.

Instead of using internal gradients, it employs a tree-structured Parzen estimator to select and optimize pixel coordinates that influence gaze saliency, ultimately producing desired adversarial images. Notably, black-box techniques are more broadly applicable in real-world scenarios and hold greater relevance in cybersecurity contexts.

Both approaches show promise based on experimental outcomes. As graduate student Haruto Namura, a participant in the study, explains, "Our findings indicate that our methods not only surpass existing techniques but also show potential as effective solutions for real-world applications, such as those on platforms like Twitter."

Overall, this study represents a significant advancement toward more reliable AI systems, crucial for meeting public expectations and earning their trust. Enhancing the efficiency of generating adversarial examples for image cropping will propel research in ML and inspire solutions to its pressing challenges.

Professor Masahiro Okuda, advisor to Namura and Yoshida, concludes, "By identifying vulnerabilities in increasingly deployed AI models, our research contributes to the development of fairer AI systems and addresses the growing need for AI governance."

More information: Masatomo Yoshida et al, Adversarial Examples for Image Cropping: Gradient-Based and Bayesian-Optimized Approaches for Effective Adversarial Attack, IEEE Access (2024). DOI: 10.1109/ACCESS.2024.3415356

Journal information: IEEE Access Provided by Doshisha University Citation: Enhancing automatic image cropping models with advanced adversarial techniques (2024, August 1) retrieved 1 August 2024 from https://techxplore.com/news/2024-08-automatic-image-cropping-advanced-adversarial.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Efficient adversarial robustness evaluation of AI models with limited access shares

Feedback to editors

Share212Tweet133ShareShare27ShareSend

Related Posts

Bilinear sequence regression model shows why AI excels at learning from word sequences
AI

Bilinear sequence regression model shows why AI excels at learning from word sequences

June 20, 2025
0

June 20, 2025 The GIST Bilinear sequence regression model shows why AI excels at learning from word sequences Lisa Lock scientific editor Robert Egan associate editor Editors' notes This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the...

Read moreDetails
AI image models gain creative edge by amplifying low-frequency features

AI image models gain creative edge by amplifying low-frequency features

June 20, 2025
All-topographic neural networks more closely mimic the human visual system

All-topographic neural networks more closely mimic the human visual system

June 20, 2025
In an era where empathy feels unfamiliar, AI now translates emotions

In an era where empathy feels unfamiliar, AI now translates emotions

June 19, 2025
Jamming with AI: Jazz trio plays live with AI-generated sound

Jamming with AI: Jazz trio plays live with AI-generated sound

June 19, 2025
Hyper-realistic AI technology creates avatars from a single photo

Hyper-realistic AI technology creates avatars from a single photo

June 19, 2025
Researchers are teaching AI to see more like humans

Researchers are teaching AI to see more like humans

June 19, 2025

Recent News

Perplexity’s AI-powered browser opens up to select Windows users

June 22, 2025

Solana’s SOL Falls 8% as Traders Brace for Fallout From a Spike in Oil Price

June 22, 2025
How to buy the Nintendo Switch 2: Latest stock updates at Target, Best Buy, Walmart and more

How to buy the Nintendo Switch 2: Latest stock updates at Target, Best Buy, Walmart and more

June 22, 2025

Bitcoin Price Slips Below $100K, Hinting Oil-Led Risk-Off on Wall Street

June 22, 2025

TOP News

  • The best Android phones for 2023

    The best Android phones for 2023

    573 shares
    Share 229 Tweet 143
  • Shiba Inu Price Prediction Today

    618 shares
    Share 247 Tweet 155
  • Google’s new AI Core update for Pixel 8 Pro will boost its powers and performance

    559 shares
    Share 224 Tweet 140
  • North Korean Hackers Pose as South Korean Government Officials to Steal Crypto

    596 shares
    Share 238 Tweet 149
  • My go-to robot vacuum and mop is still $455 off following Cyber Monday

    549 shares
    Share 220 Tweet 137
  • About Us
  • Contact Us
  • Privacy Policy
  • Terms of Use
Advertising: digestmediaholding@gmail.com

Disclaimer: Information found on cryptoreportclub.com is those of writers quoted. It does not represent the opinions of cryptoreportclub.com on whether to sell, buy or hold any investments. You are advised to conduct your own research before making any investment decisions. Use provided information at your own risk.
cryptoreportclub.com covers fintech, blockchain and Bitcoin bringing you the latest crypto news and analyses on the future of money.

© 2023-2025 Cryptoreportclub. All Rights Reserved

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Crypto news
  • AI
  • Technologies

Disclaimer: Information found on cryptoreportclub.com is those of writers quoted. It does not represent the opinions of cryptoreportclub.com on whether to sell, buy or hold any investments. You are advised to conduct your own research before making any investment decisions. Use provided information at your own risk.
cryptoreportclub.com covers fintech, blockchain and Bitcoin bringing you the latest crypto news and analyses on the future of money.

© 2023-2025 Cryptoreportclub. All Rights Reserved